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Uniparental disomy (UPD) refers to the presence of two copies of a chromosome from one parent and none from
the other parent. In genetic studies of UPDs, many genetic markers are usually used to identify the stage of
nondisjunction that leads to UPD and to uncover the associated unusual patterns of recombinations. However,
genetic information in such data has not been fully utilized because of the limitations of the existing statistical
methods for UPD data. In the present article, we develop a multilocus statistical approach that has the advantages
of being able to simultaneously consider all genetic markers for all individuals in the same analysis and to allow
general models for the crossover process to incorporate crossover interference. In particular, for a general crossover-
process model that assumes only that there exists in each interval at most one crossover, we describe how to use
the expectation-maximization algorithm to examine the probability distribution of the recombination events un-
derlying meioses leading to UPD. We can also use this flexible approach to create genetic maps based on UPD
data and to inspect recombination differences between meioses exhibiting UPD and normal meioses. The proposed
method has been implemented in a computer program, and we illustrate the proposed approach through its ap-
plication to a set of UPD15 data.

Introduction

Nondisjunction is defined as the appearance of two cop-
ies of a single chromosome in a gamete, and it is the
result of the failure of the chromosomes to separate dur-
ing meiosis. Chromosome nondisjunction may lead to
uniparental disomy (UPD), in which the chromosome
number in an individual is normal but both homologues
of a chromosome pair have originated from a single
parent (Engel 1980). Genetic conditions that are often
associated with UPD15 are Prader-Willi syndrome and
Angelman syndrome. Chromosome nondisjunction may
also lead to trisomy, the most commonly identified chro-
mosome abnormality in humans (Hassold and Jacobs
1984). In particular, trisomy 21 is responsible for 195%
of cases of Down syndrome (Fryns 1987).

Recent studies of trisomy 21 have shown that both
altered levels of recombination and altered exchange
patterns are associated with maternal nondisjunction
(Lamb et al. 1996, 1997a). Analyzing UPD15 cases,
Robinson et al. (1998) found a 26% reduction in genetic
length, compared with that in controls. Although these
studies have revealed that the recombination patterns
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among meioses leading to nondisjunction may be dif-
ferent from those among normal meioses, information
in the collected data has not been fully utilized by the
existing methods as reviewed in the following para-
graph. The objective of the present article is to develop
a general statistical approach that overcomes the limi-
tations of the existing methods in the analysis of UPD
data.

Genetic-mapping methods for nondisjoined chro-
mosomes have been discussed by Shahar and Morton
(1986), Chakravarti and Slaugenhaupt (1987), Chak-
ravarti et al. (1989), Feingold et al. (2000), and other
researchers. In most studies, genetic-map construction
is divided into two steps. In the first step, by treating
the more proximal marker as a pseudocentromere, pair-
wise LOD scores are calculated for each pair of markers,
via the observed patterns of nonreduction (heterozygous
genotype) and reduction (homozygous genotype) of
markers along the nondisjoined chromosome pair. In
the second step, these pairwise LOD scores are compiled
to derive an estimated genetic map. The limitations of
such methods are as follows: (1) instead of using mul-
tilocus information jointly, they use markers only se-
quentially, and thus many informative cases are dis-
carded in the pairwise analysis, because not all the
markers are typed and informative; (2) the procedures
used to compile pairwise LOD scores are ad hoc, and
the direction of bias is difficult to evaluate; (3) crossover
interference can be accounted for only at the stage at
which pairwise distances are combined, although cross-
over interference has been observed in humans (e.g.
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Hultén 1974, Broman and Weber 2000); and (4) joint
recombination patterns across a set of intervals cannot
be recovered from such analysis. Chakravarti et al.
(1989) proposed two approaches for multilocus anal-
ysis. One approach is to assume that there are, at most,
three chiasmata across the region under study, with, at
most, one chiasma in a given marker interval. The other
approach is to treat the proximal marker as a pseu-
docentromere relative to the distal marker. The first ap-
proach is not applicable either to chromosomes likely
to have more than three chiasmata or for studies in-
volving large marker intervals, whereas the second ap-
proach implicitly assumes the absence of chiasma in-
terference. More recently, Feingold et al. (2000) have
derived multipoint likelihoods for trisomy data under
the assumption of no crossover interference. However,
the genetic-distance estimates derived by their approach
may be biased, because crossover interference does seem
to exist during normal human meiosis (Broman and
Weber 2000). Given the limitations of the existing meth-
ods, our goal in the present article is to develop a mul-
tilocus statistical approach that can simultaneously con-
sider all genetic markers for all individuals in the same
analysis and that can allow general models for the cross-
over process to incorporate crossover interference.

The basic idea of our approach is to relate UPD to
ordered tetrads, in which four meiotic products can be
recovered together and the asci are produced in a linear
order corresponding to the meiotic divisions—for ex-
ample, in Neurospora crassa. Zhao and Speed (1998a)
have developed a general framework for the ordering
and mapping of genetic markers by using multilocus
ordered tetrads. Assuming that phases are known in the
parents, Zhao and Speed (1998b) also have derived the
relationships between multilocus probabilities for non-
disjunction data in experimental organisms—for ex-
ample, attached X chromosomes in Drosophila (Beadle
and Emerson 1935) and half-tetrads in alfalfa (Tavoletti
et al. 1996)—and multilocus ordered tetrad probabili-
ties. These relationships can be used to construct genetic
maps on the basis of nondisjunction data for any cross-
over-process model. However, the phases in the parents
are generally unknown for UPD, so the results reported
by Zhao and Speed (1998b) are not readily applicable
to UPD. In the present article, the UPD problem is
solved by extending the results reported by Zhao and
Speed.

The rest of the present article is structured as follows.
In the Methods section, we first derive general relation-
ships between multilocus UPD probabilities and ordered
tetrad probabilities. We then discuss how these rela-
tionships can be used to make statistical inferences
about genetic parameters—for example, genetic dis-
tances—related to the crossover process during meiosis

leading to UPD. The advantages of our approach are
that it can include untyped and uninformative mark-
ers in the analysis and that it also can incorporate cross-
over interference. In particular, we focus on a general
crossover-process model in which the only assumption
is that there is, at most, one chiasma within each marker
interval. We describe how, in this model, genetic pa-
rameters can be estimated on the basis of UPD data, by
use of the expectation-maximization (EM) algorithm
(Dempster et al. 1977). In the Results section, we apply
our method to a UPD15 data set. Finally, in the Dis-
cussion section, we conclude with comments on our
methods and related issues.

Methods

Notation for Multilocus Ordered Tetrad Data

In the present article, markers are denoted by script
letters. For example, we use “ ” to denote a geneticA
marker. Alleles are denoted by italic letters. For example,
A and a denote two alleles of marker . We useA

to denote the observed marker configuration[X,Y; Z,W]
for an ordered tetrad, where X and Y are attached to
one centromere and Z and W are attached to the other
centromere; for example, represents an[AB,Ab; aB,ab]
ordered tetrad with two strands, one each carrying AB
and Ab, attached to one centromere and with two
strands, one each carrying aB and ab, attached to the
other centromere. The centromere is denoted by “CEN.”
For patterns between a pair of markers, we use P to
denote the parental ditype, where all four strands retain
the parental type, T to denote the tetratype, where two
of the four strands show recombination, and N to denote
the nonparental ditype, where all four strands are re-
combinants. Throughout the article, we assume the ab-
sence of chromatid interference (Zhao et al. 1995b).

For a genetic marker segregating with two allelesA
A and a, there are six distinguishable patterns for or-
dered tetrads: I, ; II, ; III, ;[A,A; a,a] [A,a; A,a] [A,a; a,A]
IV, ; V, ; and VI, . Patterns I[a,A; A,a] [a,A; a,A] [a,a; A,A]
and VI are called the “first-division segregation”(FDS)
pattern, and patterns II–V are called the “second-divi-
sion segregation”(SDS) pattern (Griffiths et al. 1996). It
is easy to see that marker has the FDS pattern whenA
there is no chiasma between CEN and and that it hasA
the SDS pattern when there is exactly one chiasma be-
tween CEN and . In general, if there are k chiasmataA
between the centromere and , then the probability thatA

has the FDS pattern is (Mather 1935).2 1 1 kA [ � (� ) ]3 2 2

Note that marker having the FDS pattern correspondsA
to pattern P or N between and and that markerCEN A

having the SDS pattern corresponds to pattern T be-A
tween CEN and .A
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For ordered tetrads, we distinguish states forn�12 # 3
n markers in the order CEN-A1-A2-…-An. Each of these

states is represented by , wheren�12 # 3 J p (j ,j ,...,j )n 1 2 n

or 1 corresponds, respectively, to FDS or SDS atj p 01

and where , 1, or 2 corresponds, respectively,A j p 01 r

to P, T, or N between and , for . WeA A r p 2,...,nr�1 r

denote the probability of ordered tetrad state by .J pn Jn

Notation for Multilocus UPD Data

Consider n markers with each marker A , r pr

, being heterozygous with alleles Ar and ar in the1,...,n
parent undergoing nondisjunction. There can be 0, 1,
or 2 copies of allele Ar observed at marker on theAr

two nondisjoined chromosomes. When the phases in the
parent are unknown, we distinguish 2n distinct states for
joint genotypes on the two nondisjoined chromosomes.
Each of these states is denoted by , whereI p (i ,i ,...,i )n 1 2 n

or 1 corresponds to the kth marker being ho-i p 0k

mozygous or heterozygous. The probability for each pat-
tern is denoted by . Note that, throughout the pre-I un In

sent article, we use to denote an ordered tetrad stateJ
and to denote a UPD state. Their corresponding prob-I
abilities are denoted by and , respectively.p uJ I

General Relationships between Multilocus-UPD
Probabilities and Ordered-Tetrad Probabilities

Having introduced the notation both for the states of
ordered tetrads and UPD and for their probabilities, we
now establish general relationships between and .u pI J

These relationships are important for the following rea-
sons. When a crossover-process model— such as the
Poisson model or the more general x2 model (Zhao et
al. 1995a)—is specified, ordered-tetrad probabilities can
be derived more easily than can UPD probabilities.
Therefore, these relationships will allow us to express
the likelihood of any UPD state, by using ordered-tetrad
probabilities , so that we can use the UPD data topJ

make statistical inferences about the parameters in-
volved in the crossover-process model, such as genetic
distances among the markers. The model on which we
will focus in the present article is a very general one,
which assumes only that, during meiosis, there is, at
most, one chiasma in each marker interval. Under this
model, joint recombination events during meiosis could
be directly inferred if tetrad data were available. This is
because (a) the observed parental ditype between two
markers corresponds to no chiasmata in this marker in-
terval and (b) the observed tetratype between two mark-
ers must be the result of a single chiasma within this
interval; however, the presence of only two chromatids
in the UPD data prevents us from making such simple
inference. Nonetheless, with the general relationships es-
tablished in the following discussion, we can use UPD

data to make statistical inferences about ordered-tetrad
probabilities, for any joint-tetrad pattern, at the four-
strand stage during meiosis.

Before we establish the general relationships between
the and the for an arbitrary number of markers,p uJ I

we will first discuss the relationships involving a single
marker and two markers, respectively. In the case of a
single marker being heterozygous in the parent, recallA
that the two states at for UPD data are denoted byA

, where corresponds to marker beingI p (i ) i p 0 A1 1 1

homozygous (genotype AA or aa) and where cor-i p 11

responds to being heterozygous (genotype Aa). ForA
ordered tetrads, the two states at are denoted byA

, where corresponds to the FDS patternJ p (j ) j p 01 1 1

at and where corresponds to the SDS patternA j p 11

at . We need to relate the UPD probabilities (u0,u1) toA
the ordered-tetrad probabilities (p0,p1).

Meiotic nondisjunction events are classified as meiosis
I (MI) nondisjunction if the two copies of the same chro-
mosome are homologous and are classified as meiosis II
(MII) nondisjunction if the two copies are sister chro-
matids (Orr-Weaver 1996). For MI nondisjunction, the
FDS pattern at results in UPD being heterozygous atA

, and the SDS pattern at produces a homozygousA A
or heterozygous marker genotype, with equal chance.
Therefore, for MI nondisjunction,

1u 0 p0 02
p .( ) ( )( )1u 1 p1 12

For MII nondisjunction, the FDS pattern at alwaysA
results in a homozygous genotype at , whereas theA
SDS pattern at always results in a heterozygous ge-A
notype at . Therefore, for MII nondisjunction,A

u 1 0 p0 0p .( ) ( ) ( )u 0 1 p1 1

To extend these relationships to two or more markers,
we first consider MI nondisjunction. For two markers
in the order CEN-A-B, recall that we distinguish four
states for the UPD data denoted by , whereI p (i ,i )2 1 2

or 1 corresponds to the kth marker being ho-i p 0k

mozygous or heterozygous, and we distinguish six states
for ordered tetrads denoted by , whereJ p (j ,j ) j p2 1 2 1

or 1 corresponds to the FDS or SDS pattern at , and0 A
, 1, or 2 corresponds to P, T, or N betweenj p 0 A2

and . We can show that the relationships betweenB
, the UPD probabilities, and , the ordered-tetradu pI J2 2

probabilities, are
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1u p [p � p ] ,(0,0) (1,0) (1,2)2

1u p p(0,1) (1,1)2

1 1u p p � p ,(1,0) (0,1) (1,1)2 4

1u p [p � p � p ](1,1) (0,0) (0,1) (0,2)2

11� [p � p � p ] .(1,0) (1,1) (1,2)2 2

These relationships can be established by examination
of the nondisjunction outcomes for each ordered-tetrad
pattern. For example, when the notation introduced for
ordered tetrads is used, the ordered tetrads
[ have equal chances of producing one ofAb,aB; AB,ab]
the following four UPD patterns: , ,(AA,Bb) (Aa,bb)

, and . This ordered tetrad corresponds(Aa,BB) (aa,Bb)
to the ordered-tetrad state , and theI p (i ,i ) p (1,1)2 0 1

four UPD patterns correspond to the UPD states J p2

, (1,0), (1,0), and (0,1). Therefore,(j ,j ) p (0,1)0 1

gives rise to UPD states (0,1) and (1,1),[Ab,aB; AB,ab]
with equal chance. Other patterns of ordered tetrads
with state (1,1)—for example, , also give[AB,aB; Ab,ab]
rise UPD states (0,1) and (1,1), with equal probability.
When we write these equations in matrix form, we have

p(0,0)⎛ ⎞
1 1u 0 0 0 0 p⎛ ⎞(0,0) (0,1)2 2⎛ ⎞

1u 0 0 0 0 0 p(0,1) (0,2)2
p .

1 1u 0 0 0 0 p(1,0) (1,0)2 4⎜ ⎟ ⎜ ⎟
1 1 1 1u 1 1 p⎝ ⎠(1,1) (1,1)2 2 4 2 ⎜ ⎟⎝ ⎠

p⎝ ⎠(1,2)

In the general case of n markers, we show, in Appendix
A, that the multilocus UPD probabilities can be ex-u In

pressed in terms of the multilocus ordered-tetrad prob-
abilities , aspJn

u p a[I ,J ]p . (1)�I n n Jn n
Jn

The coefficients in this expression can be ob-a[I ,J ]n n

tained in an iterative way, as follows. Write intoa[I ,J ]n n

a matrix such that the columns are labeled by J pn

in lexicographical order and such that the(j ,j ,...,j )1 2 n

rows are labeled by in lexicographicalI p (i ,i ,...,i )n 1 2 n

order. Let

10 2
A p ,1 ( )11 2

1 0 1
E p ,0 ( )0 1 0

10 02
E p ;1 ( )11 12

then, the matrix can be ob-A p (a[I ,J ]) r�1 r�1r�1 r�1 r�1 2 #3

tained by replacing each in Ar by the matrixa[I ,J ] 2 # 3r r

. This establishes the general relationships be-a[I ,J ]Er r ir

tween multilocus UPD probabilities and multilocusu In

ordered-tetrad probabilities , for MI nondisjunction.pJn

For MII nondisjunction, we can similarly derive gen-
eral relationships between the multilocus UPD proba-
bilities and the multilocus ordered-tetrad probabili-u In

ties :pJn

u p b[I ,J ]p .�I n n Jn n
Jn

To find the values for each , write intob[I ,J ] b[I ,J ]n n n n

a matrix such that the columns are labeled by J pn

in lexicographical order and such that the(j ,j ,...,j )1 2 n

rows are labeled by in lexicographicalI p (i ,i ,...,i )n 1 2 n

order. Let

1 0
B p .1 ( )0 1

Using a proof similar to that which we give, in Ap-
pendix A, for MI nondisjunction, we can show that
the matrix can be obtainedB p (b[I ,J ]) r�1 r�1r�1 r�1 r�1 2 #3

by replacing each in by the matrixb[I ,J ] B 2 # 3r r r

, where the matrices are the same as thoseb[I ,J ]E Er r i ir r

used the MI nondisjunction case.

A General Model for the Crossover Process

The general relationships discussed above allow us to
incorporate any crossover-process model to analyze UPD
data, provided that we can evaluate multilocus ordered-
tetrad probabilities. To make the underlying chiasma
process as general as possible, here we focus on a cross-
over process model that has only one restriction on the
joint recombination probabilities: across the set of mark-
ers being studied, there is, at most, one chiasma in each
marker interval. This assumption is likely to be true if
the markers are sufficiently close to each other. Under
this model, there are only two possible types between
two markers for an ordered tetrad: parental ditype (P)
and tetratype (T). These two types correspond to exactly
0 and 1 chiasma between two markers.

For this model, we distinguish 2n distinct states for



Zhao et al.: Uniparental Disomy Mapping 855

ordered tetrads involving n markers. Each of these 2n

states can be represented as , whereJ p (j ,j ,...,j )n 1 2 n

or 1 corresponds to P or T between andj p 0 Ar r�1

( ), for . The probability of stateA A p CEN r p 1,...,nr 0

is also denoted by , as for the general case. TheJ pn Jn

model parameters for this model are the joint ordered-
tetrad probabilities, excluding the possibility of non-
parental ditype in any marker interval. Under this model,
the general relationships between UPD probabilities and
ordered-tetrad probabilities in equation (1) reduce to

u p c[I ,J ]p , (2)�I n n Jn n
Jn

for MI nondisjunction. The coefficients can bec[I ,J ]n n

obtained in an iterative way. Write into a matrixc[I ,J ]n n

such that the columns are labeled by in lexicographicalJn

order and such that the rows are labeled by in lexi-In

cographical order. Let

10 2
C p ,1 ( )11 2

1 0
G p ,0 ( )0 1

10 2
G p .1 ( )11 2

The matrix can be obtainedC p (c[I ,J ]) r�1 r�1r�1 r�1 r�1 2 #2

by replacing each in Cr by the matrixc[I ,J ] 2 # 2r r

. It is easy to see that the difference betweenc[I ,J ]Gr r ir

this special case and the general case discussed above is
that, in both E0 and E1, we delete the last column, to
obtain G0 and G1.

For MII nondisjunction, we can similarly derive the
relationships between the multilocus UPD probabilities

and the multilocus ordered-tetrad probabilities ,u pI Jn n

as

u p d[I ,J ]p . (3)�I n n Jn n
Jn

Write into a matrix such that the columns ared[I ,J ]n n

labeled by in lexicographical order and such that theJn

rows are labeled by in lexicographical order. LetIn

1 0
D p .1 ( )0 1

The matrix can be obtainedD p (d[I ,J ]) r�1 r�1r�1 r�1 r�1 2 #2

by replacing each in Dr by the matrixd[I ,J ] 2 # 2r r

.d[I ,J ]Gr r ir

UPD-Data Representation

For UPD data, many markers may be untyped or un-
informative. At any given locus, in addition to using R
(reduced) and N (nonreduced) to denote homozygous
genotype and heterozygous genotype for the two chro-
mosomes when the marker is heterozygous in the parent,
we use M to denote an untyped or an uninformative
marker. Therefore, each UPD individual can be repre-
sented as a character string using R, N, and M—such
as “…NRNMN….”

Maximum-Likelihood Estimates of Multilocus Ordered-
Tetrad Probabilities If There Is at Most OnepJn

Chiasma within Each Marker Interval

Assume that we have collected a sample of individuals
with UPD, each of whom is typed at some of the n
genetic markers. For the model discussed above, we can
use the EM algorithm to estimate the model parameters,
which are the multilocus ordered-tetrad probabilities

. For either MI- or MII-error cases, we start the EMpJn

algorithm with initial estimates of the multilocus or-
dered-tetrad probabilities . The E-step computes the0pJn

expected number of each possible ordered-tetrad state
conditional on the observed UPD data and the initialJn

values . The M-step then maximizes the likelihood of0pJn

this “expected” data set and thus generates updated es-
timates of . These new estimates are fed back into thepJn

E-step, and the algorithm iterates until the estimates con-
verge. Details concerning the E-step and the M-step are
described in Appendix B.

Once we obtain the maximum-likelihood estimates of
ordered-tetrad probabilities , we can use these param-pJn

eter estimates to examine different aspects of the cross-
over process leading to nondisjunction. The estimate of

is denoted by . We use the three-marker case (theˆp pJ Jn n

three markers are in the order CEN-A1-A2-A 3) as an
example to illustrate the principles. First, the estimated
probability for each ordered-tetrad state, with either pa-
rental ditype or tetratype in each marker interval, is the
estimated probability, over the chromosomal segment
studied, of the joint recombination events, with parental
ditype corresponding to no chiasmata, and with tetra-
type corresponding to one chiasma, in each marker in-
terval; for example, the joint probability that there is
one chiasma between CEN and , no chiasmata be-A 1

tween and , and one chiasma between andA A A1 2 2

can be estimated by . Second, we can esti-ˆA p3 J p(1,0,1)3

mate the frequency, across the whole chromosomal seg-
ment studied, of having a given number of chiasmata;
for example, the estimated probability of having two
chiasmata in the whole region is .ˆ ˆf p S p2 {J :j �j �j p2} J3 1 2 3 3

Third, we can examine the joint distribution of the re-
combination events in all marker intervals conditional
on a given number of chiasmata in the whole region.



856 Am. J. Hum. Genet. 67:851–861, 2000

Table 1

Estimated Genetic Distances on the Basis of
10-Marker UPD Data, for 69 Cases Due to
MI Error

MARKER

GENETIC DISTANCE � SEa

(cM)

MI UPD Soton Map

CEN … …
GABRB3 .0 � .0 3.8
D15S24 3.3 � 1.9 11.9
ACTC 4.8 � 2.5 12.5
CYP19 17.3 � 4.6 17.4
D15S98 10.1 � 4.4 15.9
D15S108 7.8 � 4.1 11.5
D15S131 19.3 � 4.5 19.4
D15S114 5.0 � 3.1 4.2
D15S100 16.7 � 5.5 38.4
D15S87 17.1 � 5.2 13.0

Total 101.4 � 11.5 148.1b

a SEs are estimated from 1,000 bootstrap
samples. The “Soton Map” entries, which are
shown for purposes of comparisons, are esti-
mated from normal female meioses compiled by
The Genome Database.

b Because of rounding error, entries do not
sum to exactly the total shown.

For example, the probability that the two chiasmata oc-
cur in the CEN–A1 and the intervals conditionalA –A2 3

on having two chiasmata in the whole region can be
estimated by . Last, we can estimate theˆ ˆ(1/f )p2 J p(1,0,1)3

genetic distance between each pair of consecutive mark-
ers, and , by .ˆ ˆA A d p S j # pr r�1 r J r J3 3

We employ the bootstrap method to approximate the
uncertainties in the parameter estimates discussed above
(Efron and Tibshirani 1993). For the bootstrap method,
we first simulate B sets of UPD data, each having the
same sample size as that of the observed sample. In the
simulations, we first calculate the estimated probability
of each UPD state , via the estimated ordered-tetradˆI , un In

probabilities and the general relationships establishedp̂Jn

in equation (2) or equation (3). Then each simulated
observation is a random sample from a multinomial dis-
tribution with all possible UPD states as outcomes and
with their associated probabilities being . We can es-ûIn

timate the parameters of interest from each simulated data
set in exactly the same way as we estimate these param-
eters from the observed data. If genetic distances are the
parameters of interest, we use to denote the estimatedˆ bdr

genetic distance in the rth marker interval for the bth
simulated data set. From the B bootstrap samples, the
standard error (SE) for the estimated genetic distance in
the rth marker interval, , can be estimated byd̂r

—B1 ˆ ˆb 2� � (d � d ) ,r r
bp1B

where is the mean of the values.
—
ˆ ˆ bd dr r

Results

Maternal UPD15 is found in ∼25% of patients with
Prader-Willi syndrome (Nicholls et al. 1989; Robinson
et al. 1991). It has been found that the nondisjunction
event leading to UPD15 is predominantly due to a ma-
ternal MI segregation error and that there is a maternal
age effect (Robinson et al. 1998). In this section, we
apply the methods discussed in the previous section, to
analyze one UPD15 data set consisting of 81 cases of
UPD15. The data set analyzed here represents only a
subset of the 115 cases analyzed by Robinson et al.
(1998), because of the exclusion both of trisomy cases
and of some UPD cases that were typed entirely outside
the Robinson lab and that therefore included a largely
different set of markers.

Because markers for the centromere of chromosome
15 were not available, we used markers D15S541,
D15S542, and D15S543 to infer the meiotic stage of
origin. These markers are the markers most proximal to
the centromere. Because there is no known crossing-over
between them, as is also the case in the study by Robinson

et al. (1998), we treated them as one marker and were
able to determine meiotic stage of origin for each case.
Of the 81 cases of UPD, 12 were identified as being due
to MII errors. In our analysis, we considered 10 markers
spanning the interval CEN–D15S87 that were in the
order CEN-GABRB3-D15S24-ACTC-CYP19-D15S98-
D15S108-D15S131-D15S114-D15S100-D15S87. In
light of the presence of many untyped and uninform-
ative markers in the data set, we chose these markers
because they had the lowest amount of missing infor-
mation. The overall percentage of untyped and unin-
formative markers for these 10 markers, across all in-
dividuals, was 44%.

Because there were 12 cases due to MII errors, we
present here only our results on UPDs that were due to
MI errors. For the 69 MI cases, we estimated the or-
dered-tetrad probabilities by using this 10-markerpJn

data set. As discussed in the Methods section, the p̂Jn

can be used to examine different aspects of the recom-
bination process leading to UPD. In table 1, we sum-
marize the estimated genetic distances based on the

values among the 10 markers. The SEs were esti-p̂Jn

mated on the basis of the bootstrap method, with 1,000
simulated samples. The estimated total genetic distance
from CEN to D15S87 was 101.4 cM, with a SE of 11.5
cM. We also estimated the SEs by using the jackknife
method, and the results were very similar (data not
shown). Using sequential pairwise analyses, Robinson
et al. (1998) estimated tetratype frequency and genetic
distance for each interval, on the basis of the number



Zhao et al.: Uniparental Disomy Mapping 857

of observed exchanges (transitions from nonreduced to
reduced markers, or vice versa). The total genetic dis-
tance between CEN and D15S87, on the basis of MI
nondisjunction events, was estimated by summation of
the estimated lengths from all intervals. Although Rob-
inson et al. (1998) used this different method to analyze
97 cases with MI errors (a superset of the 69 cases
analyzed here), their estimate of the total genetic length,
95.8 cM, was similar to our estimate, 101.4 cM.

In table 1, we also compare the estimated genetic
distances based on UPD data, using these 10 markers
with the female genetic map derived from normal mei-
oses maintained at The Genetic Location Database.
There is a reduction in genetic distance for some in-
tervals, and the total genetic distance based on UPD
data is almost one-third shorter than that based on nor-
mal meioses. The largest reduction occurs in the
D15S100–D15S87 interval. To allow formal statistical
testing using the approach developed in the present ar-
ticle, we need to apply the same statistical model to
standard pedigree data from normal meioses—for ex-
ample, data from CEPH pedigrees. Because such im-
plementations and comparisons are beyond the scope
of the present article, which focuses on the develop-
ments of a general model for UPD data from nuclear
families, we will address this issue in a separate re-
port. Nevertheless, by using the genetic distance esti-
mates and their SEs, we can see that the reductions
in three marker intervals—D15S24–ACTC, ACTC–
CYP19, and D15S100–D15S87are likely to be signifi-
cant. If we use alternative models that use only genet-
ic distances to derive all multilocus UPD-pattern prob-
abilities—for example, the x2 model (Zhao et al.
1995a)—rigorous statistical tests can be performed by
letting the genetic distances equal the values estimated
on the basis of the normal meioses, under the null hy-
pothesis, and allowing them to vary freely, under the
alternative hypothesis. Likelihood-ratio tests can thus
be performed to test whether the genetic distances sig-
nificantly differ, between meioses leading to UPD and
normal meioses.

As mentioned in the Methods section, in addition to
genetic distances, we can also study the probability dis-
tribution of recombination patterns by using the esti-
mated ordered-tetrad probabilities. We first estimated
the distribution of the number of chiasmata in the UPD
data. With the 10 markers used in the analysis, the
estimated proportions of tetrads with 0, 1, 2, 3, 4, 5,
and 6 chiasmata were 14.5%, 18.8%, 21%, 41.6%,
3.3%, 0.7%, and 0.1%, respectively. At a frequency of
41.6%, tetrads with three chiasmata represented the
most common class. This result agrees with the estimate
by Robinson et al. (1998), who estimated the propor-
tion of tetrads with three chiasmata as being 48%. For
other numbers of chiasmata, the estimates of tetrads

with 0, 1, 2, and 4 chiasmata were 21%, 22%, 0%,
and 9%, respectively. Although the two sets of estimates
generally agree, differences in the methodology cause
discrepancies to occur; the largest is for the class of
tetrads with 2 chiasmata, for which Robinson et al.
reported 0% and we report 21%. Because our estimates
were based on a very general and comprehensive frame-
work, our approach may provide better estimates than
those provided by the approach adopted by Robinson
et al. (1998).

One major advantage of our approach is that it allows
us to examine the joint distribution of recombination
events along the chromosome conditional on a given
number of chiasmata. In table 2, we summarize such
conditional distributions of the chiasmata among the
10 intervals. When there was a single chiasma in the
whole region, it occurred only within the last two
marker intervals. For the 2-chiasmata case, the mode
of the first chiasma (150%) was in the fifth marker
interval, whose genetic length was estimated at only 10
cM, and the second chiasma was distributed with ap-
proximately the same proportion in the sixth, seventh,
and the ninth interval. In contrast to the 1-chiasma case,
in which the last interval had 130% of the chiasmata,
only 8% of the tetrads had 1 chiasma in the last interval
when 2 chiasmata occurred on the tetrads. When there
were 3 chiasmata, the most common pattern was that
the first chiasma occurred in the fourth interval, the
second chiasma occurred in the seventh interval, and
the third chiasma occurred in the last interval. The
exchange patterns conditional on a total of four chi-
asmata in the region were much less reliable because
they were derived from only 3.3% of the total cases.

Discussion

Recent studies of nondisjunction data on humans have
revealed that both altered levels of recombination and
altered exchange patterns may be associated with non-
disjunction, at both MI and MII (Lamb et al. 1996,
1997a; Robinson et al. 1998). However, these studies
have not been able to fully utilize the genetic information
in the collected data in their analysis, because of the
limitations in the existing methods. To address this prob-
lem, in the present article we have developed a general
framework within which to analyze UPD data. Our mul-
tilocus approach is based on the relationships that we
have established between multilocus UPD probabilities
and multilocus ordered-tetrad probabilities. All genetic
markers, including untyped and uninformative markers,
are simultaneously utilized to study the recombination
patterns leading to UPD.

In principle, our approach allows us to incorporate
any crossover-process model, to analyze multilocus
UPD data. In the present article, we have focused on a
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Table 2

Conditional Exchange Patterns for Chiasmata When Total Number of Chiasmata on
Tetrads Is k p 0, 1, 2, 3, and 4

1 2 3 4 5 6 7 8 9 10

FREQUENCY, CONDITIONAL ON k, IN INTERVAL

k (distribution):
0 (.145) … … … … … … … … … …
1 (.188) .00 .00 .00 .00 .00 .00 .00 .00 .68 .32
2 (.210):

First .00 .19 .01 .08 .56 .07 .00 .04 .05 .00
Second .00 .00 .00 .00 .05 .37 .26 .00 .25 .08

3 (.416):
First .00 .05 .20 .62 .09 .04 .00 .00 .00 .00
Second .00 .00 .00 .13 .05 .04 .72 .04 .03 .00
Third .00 .00 .00 .00 .00 .01 .01 .12 .26 .59

4 (.033):
First .00 .12 .03 .27 .06 .52 .00 .00 .00 .00
Second .00 .00 .09 .06 .15 .06 .67 .00 .00 .00
Third .00 .00 .00 .03 .09 .06 .06 .64 .09 .00
Fourth .00 .00 .00 .00 .00 .03 .00 .03 .48 .45

MAP DISTANCE

(cM)

Total .0 3.3 4.8 17.3 10.1 7.8 19.3 5.0 16.7 17.1

very general model, which assumes only that there is,
at most, one chiasma in each marker interval on the
tetrads. For this particular model, we have implemented
an EM algorithm to estimate multilocus ordered-tetrad
probabilities on the basis of the observed UPD data, in
a computer program that will be made available at our
Web site (Hongyu Zhao’s Lab of Statistical Genetics).
Provided that there are many markers available, so that
the chance of having more than one chiasma in a par-
ticular interval is small, this model will capture most of
the recombination events. This assumption is likely to
hold for most of the marker intervals in the UPD data
analyzed in the Results section, although it would be
more helpful to analyze additional markers in the four
intervals with the largest genetic distance—that is, in-
tervals ACTC–CYP19, D15S108–D15S131, D15S114–
D15S100, and D15S100–D15S87. We have also illus-
trated how to use the estimated ordered-tetrad proba-
bilities to estimate genetic distances among markers,
how to estimate the distribution of the number of chi-
asmata in the chromosomal region under study, and,
given a certain number of chiasmata in the region, how
to estimate the joint conditional distribution of recom-
bination events.

Weinstein (1936) presented methods for inferring,
from the observed recombination patterns, the fre-
quency of tetrads of various ranks (i.e., zero, single, and
multiple exchanges) in a population of Drosophila. On
the basis of the methods of Weinstein (1936), Lamb et
al. (1997b) estimated chiasma distributions for the hu-
man female chromosome 21. In another study, Lamb

et al. (1997a) applied the principles of Weinstein’s meth-
ods to the analysis of trisomy data. They first divided
the whole chromosome into intervals that were long
enough to have a few informative markers in each in-
terval and short enough to have only 1 chiasma. Then
they scored either recombination or its absence across
each interval, using observed marker information.
When there was ambiguity, a single recombination event
was split between the two adjacent intervals. Compared
with the method discussed by Lamb et al. (1997b), the
advantages of our approach are that (1) we directly
work on the UPD data themselves, without making in-
ference about whether a recombination event has oc-
curred in a marker interval and (2) missing data are
incorporated in a more sophisticated way, through the
application of the EM algorithm. The same approach
can be applied to the analysis of ovarian teratomas (Ott
et al. 1976). With some modifications, this method has
been extended to the analysis of trisomy data on hu-
mans (J. Li and H. Zhao, unpublished results). In the
case of the Poisson model for the crossover process,
results from our extended approach were identical to
those discussed by Feingold et al. (2000).

In our classification of UPDs as being due to either
MI errors or MII errors, we used D15S541, D15S542,
and D15S543 to infer the meiotic stage of nondisjunc-
tion origin. By means of this rule, 12 of the 81 cases
were identified as being due to MII errors, and 69 cases
were identified as being due to MI errors. Because these
markers are near but not at the centromere, there may
be errors involved in the assignment of origin (Robinson
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et al. 1993). Therefore, when these markers are used,
one would expect some proportions of true MII errors
to be misclassified as MI errors, and vice versa. If there
is no difference, in exchange patterns, between MI UPD
data and MII UPD data, then our estimates of proba-
bilities for exchange patterns are still unbiased. How-
ever, the estimated recombination patterns would be
biased if significant differences exist between MI non-
disjunction events and MII nondisjunction events. These
significant differences would be detected by comparison
of exchange patterns estimated from “apparent” MI
cases and “apparent” MII cases, because the majority
of the cases in each group would represent correctly
classified cases. In our data set, there were only 12 cases
due to MII errors, preventing us from making mean-
ingful comparison. On the other hand, we may treat
the “apparent” cases of MI as a mixture of “true” cases
of MI and “false” cases of MI. If the mixture proportion
is known a priori, then valid statistical inference can
still be drawn from such data.

In addition to the general crossover model discussed
in the present article, the general relationships between
UPD probabilities and ordered-tetrad probabilities al-
low us to consider any model for the crossover process,
as long as ordered-tetrad probabilities can be easily eval-
uated. The major limitation of such an approach is that
the amount of computation increases exponentially
with the number of genetic markers analyzed. This may
impose potential computational problem if the number
of markers is very large. Under the x2 model for the
crossover process (Zhao et al. 1995a), hidden Markov
models can be used to evaluate the probability of any
UPD pattern (H. Zhao and J. Li , unpublished results).
The advantage of the hidden-Markov-model approach
is that the amount of computation increases linearly
with the number of markers, allowing the inclusion of
hundreds of markers in the analysis. Another advantage
of the x2 model is that many fewer parameters are in-
volved in the model. Therefore, when the crossover-
process model is correctly specified, we may obtain
more-accurate estimates of genetic parameters of inter-
est and may derive more-powerful tests for hypotheses
concerning the recombination process—for example,
the hypothesis concerning whether recombination is re-
duced among meioses leading to nondisjunction. When
the x2 model was applied to the same UPD data set, the
estimated genetic distances generally agreed with those
estimated in the present article, although the estimated
distances under the x2 model were larger across a few
longer marker intervals. When the likelihood-ratio test
was performed to test the null hypothesis of no recom-
bination reduction in UPD meioses, the result was in-
conclusive, probably because of the small sample size
of this data set. Because the mathematical treatments
of the UPD data under the x2 model are very different

from the approach that we have presented here, the
general methods for the x2 model and the results derived
from them will be reported in a separate article. Al-
though the x2 model or other models with a few pa-
rameters are, in general, computationally attractive, the
danger in using them is the possibility that the model
assumptions may be incorrect, leading to biased esti-
mates for the genetic parameters of interest. Because the
only assumption that underlies the model discussed in
the present article is that there is, at most, 1 chiasma
in each marker interval, this approach is very likely to
yield the most unbiased description of the recombina-
tion events during meiosis, if the distances among the
markers are sufficiently small. The results from other
models can be compared with those from this approach,
to assess the goodness of fit of the other models.
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Appendix A

Matrix An: Proposition and Proof

PROPOSITION A. For MI nondisjunction, the matrix
An that relates multilocus UPD probabilities and mul-
tilocus ordered-tetrad probabilities can be obtained by
use of the procedure described in the text.

PROOF. When , the FDS pattern yields only then p 1
heterozygous pattern (N) and the SDS pattern yields
both the heterozygous pattern (N) and the homozygous
pattern (R), with the same probability. Therefore,

1u 0 p0 02
p .( ) ( )( )1u 1 p1 12

Suppose that the proposition holds when ; that is,n p r
, where . Consideru p S a[I ,J ]p A p (a[I ,J ]) r rI J r r J r r r 2 #3r r r

A ,r�1

u p a[I ,(J ,j p 0)]p�I r�1 r r�1 (J ,j p0)r�1 r r�1
(J ,j p0)r r�1

� a[I ,(J ,j p 1)]p� r�1 r r�1 (J ,j p1)r r�1
(J ,j p1)r r�1

� a[I ,(J ,j p 2)]p .� r�1 r r�1 (J ,j p2)r r�1
(J ,j p2)r r�1
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When —that is, it is R at —the tetrad fromi p 0 Ar r

which the UPD is derived must have the SDS pattern at
. For the parental ditype ( ) and the nonpar-A j p 0r r�1

ental ditype ( ) between and , it shouldj p 2 A Ar�1 r r�1

be homozygous (R) at —that is, ; and, forA i p 0r�1 r�1

the tetratype between and , it should be hetero-A Ar r�1

zygous (N) at —that is, . Therefore,A i p 1r�1 r�1

a[(I ,0,0),(J ,0)] a[(I ,0,0),(J ,1)] a[(I ,0,0),(J ,2)]r�1 r r�1 r r�1 r( )a[(I ,0,1),(J ,0)] a[(I ,0,1),(J ,1)] a[(I ,0,1),(J ,2)]r�1 r r�1 r r�1 r

1 0 1
p a[(I ,0),J )] .r�1 r ( )0 1 0

When , then, (1) if or 2, then ,i p 1 j p 0 i p 1r r�1 r�1

and, (2) if , then has the same probabilityj p 1 ir�1 r�1

to be 0 and 1. Therefore,

a[(I ,1,0),(J ,0)] a[(I ,1,0),(J ,1)] a[(I ,1,0),(J ,2)]r�1 r r�1 r r�1 r( )a[(I ,1,1),(J ,0)] a[(I ,1,1),(J ,1)] a[(I ,1,1),(J ,2)]r�1 r r�1 r r�1 r

10 02
p a[(I ,1),J ] .r�1 r ( )11 12

Note that the lexicographical order is still preserved.
This completes the proof of the proposition.

Appendix B

The EM Algorithm for the Maximum-Likelihood Esti-
mates of Multilocus Ordered-Tetrad Probabilities,
When It Is Assumed That There Is, at Most, 1 Chiasma
within Each Marker Interval

We describe here the EM algorithm for MI nondis-
junction data; the algorithm for MII nondisjunction data
is similar.
1. E-step: Denote the current estimates of ordered-tetrad

probabilities by . Our data reconstruction is per-cpJn

formed in two steps: (a) calculate the expected number
of each possible UPD state , given the observedC II nn

data and the current estimates ; and (b) calculatecpJn

the expected number of each possible ordered-DJn

tetrad state , on the basis of .J Cn In

(a) It is straightforward to calculate the multilocus UPD-
state probabilities, , via the relationships estab-In

lished in equation (2). For each individual in the ob-
served sample, if there is no untyped or
uninformative marker, this sample case corresponds
to a particular UPD pattern , whereI p (i ,i ,...,i )n 1 2 n

or 1 for . So the contribution of thisi p 0 1 � k � nk

sample case to pattern is 1, and that to all otherIn

patterns is 0. If there are h untyped or(1 � h ! n)

uninformative markers for an individual, this case
corresponds to 2h different string patterns. Denote
the positions of these untyped or uninformative
markers by ; the 2h different UPD pat-m ,m ,...,m1 2 h

terns can be represented by , where,l p (l ,l ,...,l )n 1 2 n

if , then lk can take value 0 or 1,k � {m ,m ,...,m }1 2 h

and where, if , then lk takes a fixedk�{m ,m ,...,m }1 2 h

value fk of 0 or 1. Therefore, the contribution of this
individual to each of the 2h different states can be
calculated by , and the contributionu /S ul l ,l ,...,l ln m m m n1 2 h

of this individual to all other patterns besides theseIn

2h patterns is 0. If we go through the whole data set
in this fashion, we can obtain the expected number

for each possible UPD state .C II nn

(b) With the relationships between and in equationu pI Jn n

(2), we calculate for each ordered-tetrad state, onDJn

the basis of the values obtained in step (a), asC In

follows:

cc[I ,J ]pn n JnD p C .�J I cn n � c[I ,J ]pIn n n Jn
Jn

2. M-step: The updated estimates of the multi-
locus ordered-tetrad probabilities are newp p pJ Jn n

, where S is the sample size. Repeat the E-stepD /SJn

and the M-step until convergence is obtained.
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